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Abstract
Lloyd’s formula is an elegant tool to calculate the number of states directly from
the imaginary part of the logarithm of the Korringa–Kohn–Rostoker (KKR)
determinant. It is shown how this formula can be used at finite electronic
temperatures and how the difficult problem to determine the physically
significant correct phase of the complex logarithm can be circumvented by
working with the single-valued real part of the logarithm. The approach is based
on contour integrations in the complex energy plane and exploits the analytical
properties of the KKR Green function and the Fermi–Dirac function. It leads
to rather accurate results, which is illustrated by a local-density functional
calculation of the temperature dependence of the intrinsic Fermi level in zinc-
blende GaN.

1. Introduction

Lloyd’s formula [1, 2] for the integrated density of states is an important concept in the
Korringa–Kohn–Rostoker (KKR) multiple-scattering method [3, 4]. Lloyd’s formula provides
an analytical integration over energy and space and directly gives the total number of states
as function of energy. The angular-momentum convergence of Lloyd’s formula is fast, since
it is directly related to the decrease of the phase shifts which usually rapidly decrease for
the higher angular-momentum channels. Nevertheless, Lloyd’s formula is not often used in
electronic structure calculations and its application is mainly restricted to calculations within
the coherent-potential approximation and for impurities, for which it improves calculated total
energies, for instance impurity solution energies, in a spectacular manner [5]. One difficult
problem for the numerical application of Lloyd’s formula is the determination of the correct
phase of the multivalued complex logarithm of the KKR determinant. The calculated value of
the KKR determinant at the local energy E alone does not contain the information about the
correct branch of the logarithm. The branch is necessary to determine the number of states
from the correct multiple of π of the phase and can only be found if the global behaviour of
the KKR determinant for all energies below E is taken into account.
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It is the aim of this paper to present a method for a reliable and accurate calculation of
Lloyd’s formula and to show how it can be used together with Fermi–Dirac statistics in finite-
temperature electronic-structure calculations. The method is based on contour integrations in
the complex energy plane and exploits the analytical properties of the KKR Green function and
the Fermi–Dirac function. For periodic crystals the method conveniently applies the concept
of a repulsive reference system, which is used in the tight-binding (screened) KKR method and
consists of an infinite array of repulsive muffin-tin potentials [6]. It will be discussed why the
repulsive reference system is better suited than the usually applied free-space reference system
and it will be shown that the results are accurate enough to determine the effect of the Fermi–
Dirac statistics on the temperature dependence of the intrinsic Fermi level of semiconductors.
This will be illustrated by a local-density-functional calculation for GaN in its zinc-blende
structure.

The outline of the paper is as follows. First the basic equations for Lloyd’s formula in
the KKR Green-function method and the numerical details of the calculations are described.
After this the effects of angular-momentum convergence, Brillouin-zone sampling and real-
space construction of the structure constants of the reference system are investigated. Then it
is shown how Lloyd’s formula can be applied together with finite temperatures. Finally, the
approach is presented, which circumvents the phase problem and is accurate enough for the
determination of the temperature dependence of the intrinsic Fermi level.

2. Lloyd’s formula in the KKR Green-function method

The number of occupied electronic states as function of chemical potential µ and temperature
T is given by

Ne(µ, T ) = − 1

π
Im

∫ ∞

−∞
dE f (E, µ, T ) Tr G(E), (1)

where f (E, µ, T ) = (1 + exp(β(E − µ)))−1 is the Fermi–Dirac function with β−1 = kT
and Tr G(E) is the trace of the single-particle Green function. The multiple-scattering
representation of the Green function can be written as

G(r + Rn, r′ + Rn′ ; E) = δnn′
∑

L

Rn
L (r<; E)Sn

L(r>; E) +
∑
L L ′

Rn
L(r; E)Gnn′

L L ′(E)Rn′
L ′(r′; E)

(2)

in the notation of [7], where r and r′ are site-centred coordinates and Rn and Rn′
denote the

scattering sites. The vectors r< and r> stand for r or r′ with smaller or larger length. The
Green-function matrix elements Gnn′

L L ′(E) can be obtained by an algebraic Dyson equation [8]
from the Green-function matrix elements Gr,nn′

L L ′ (E) of a reference system. For r > rn
s , where

rn
s is the radius of the sphere circumscribed around the Wigner–Seitz or Voronoi cell at site

Rn , the single-scattering solutions Sn
L (r; E) and Rn

L(r; E) fulfil the boundary conditions

Sn
L (r; E) = −i

√
Eh(1)

l (r
√

E)YL (r̂) (3)

Rn
L (r; E) = jl(r

√
E)YL(r̂) − i

√
E

∑
L ′

h(1)
l′ (r

√
E)YL ′(r̂)tn

L ′ L(E) (4)

with tn
L L ′(E) defined as

tn
L L ′(E) =

∫
n

dr jl(r
√

E)YL (r̂)V n(r)Rn
L ′(r, E). (5)

Here the integral is over cell n and jl and h(1)

l denote spherical Bessel and Hankel functions
and YL spherical harmonics with a combined index L = lm.
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In numerical calculations the sums in (2) must be truncated to a finite number of angular
momenta L. This prevents the correct normalization of the multiple-scattering Green function
and represents a fundamental problem. This problem has been recognized in the past [9–14]
and it particularly affects insulators and semiconductors, where the position of the Fermi level
cannot be determined in this way. In these materials only an exact normalization guarantees
that the Fermi level falls into the bandgap. A small, even tiny error in the normalization always
means that the calculated Fermi level is physically incorrectly placed either in the valence or
in the conduction band. In metals the error is much less pronounced, since due to the partial
occupation of states the Fermi level is only slightly changed by an incorrect normalization and
does not occur in a principally wrong position. But also in metals serious errors can occur, for
instance, in the normalization of semicore states. The wrong normalization of these states is
counterbalanced by a Fermi level shift, which despite its smallness can lead to a large error of
the total energy.

A solution for this problem can be obtained by rewriting (1) as

Ne(µ, T ) = −Im
∫ ∞

−∞
dE N(E)

d

dE
f (E, µ, T ) (6)

and by using Lloyd’s formula for N(E) = − 1
π

∫ E dE ′ Tr G(E ′). Note that here N(E) is used
as a complex quantity and that its imaginary part gives the usual integrated density of states.
The appropriate form of Lloyd’s formula [1, 15], valid for complex energies and full potentials,
has been given by Drittler et al [5, 16, 17] in the form

N(E) = Nr (E) +
1

π

∑
n

ln det |�αn
L L ′(E)| − 1

π
ln det |δnn′

L L ′ − Gr,nn′
L L ′ (E)�tn′

L L ′(E)|, (7)

where the sum is over the cells and the �t and �α matrices are changes with respect to the
reference system. The KKR determinant det |1− Gr�t| is over combined angular-momentum
and cell indices, whereas the determinant det |�α| is over angular-momentum indices alone.
For periodic crystals with an infinite number of atoms, (7) cannot be used directly because it
gives an infinite result. Then N(E) defined per unit cell as

N(E) = Nr (E) +
1

π

∑
ν

ln det |�αν
L L ′(E)|

− 1

πVBZ

∫
BZ

dk ln det |δνν′
L L ′ − Gr,νν′

L L ′ (k, E)�tν′
L L ′(E)| (8)

can be used, where the integral is over the Brillouin-zone and where the sum over ν and the
site indices ν, ν ′ in the KKR determinant are restricted to the basis sites within the unit cell.
In (7) and (8) the quantity Nr (E) is the ‘integrated density of states’ of the reference system
and Gr,nn′

L L ′ (E) and Gr,νν′
L L ′ (k, E) are the Green-function matrix elements of the reference system

and their lattice Fourier transforms. The matrix �α describes the different behaviour of the
single-scattering solutions Rn

L and Rr,n
L at the origin

Rn
L (r, E) =

∑
L ′

Rr,n
L ′ (r, E)�αn

L ′L (E) for r → 0 (9)

and can be calculated by

�αn
L L ′(E) = δL L ′ +

∫
n

drSr,n
L (r, E)�V n(r)Rn

L ′(r, E), (10)

where �V (r) = V (r) − V r (r) is the difference of potentials and Sr,n
L and Rr,n

L are the single-
scattering solutions of the reference system satisfying boundary conditions as in (3) and (4).
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The problem with the evaluation of the total number of states is a characteristic feature
of the Green-function version of the KKR method. In the traditional KKR method the
eigenfunctions of the genuinely infinite-dimensional KKR matrix are calculated by truncating
this matrix to the subspace of low angular momenta l � lmax and by normalizing the
eigenfunctions in this subspace [18]. In this way the correct number of states is obtained,
although a proper normalization would require all angular momenta l < ∞. In a sense, by
restriction to a subspace, the weight of the momenta l > lmax is transferred to the lower l values
l � lmax. Basically similar subspace procedures are followed in any finite-basis-set method.

3. Details of the numerical calculations

The calculations were performed by the Jülich full-potential KKR program [8], where the
form of the Wigner–Seitz cells is described by shape functions �(r), which are expanded into
spherical harmonics [19, 20] and used for integrals as in (5) and (10). The single-scattering
solutions Rn

L and Sn
L were calculated by first solving the radial Schrödinger equation for the

spherical part of the potential and then iterating a Born series (up to fourth order) to include
the non-spherical part as described in [8, 21]. The numerical investigations were done for
the technologically important semiconductor GaN. Instead of the more complicated wurtzite
structure the zinc-blende structure (with the experimental lattice constant a = 0.452 nm [22])
was used. To avoid too elongated cells around the atoms, the zinc-blende structure was treated
as a face-centred-cubic lattice with four basis sites along the (111) direction. Two sites were
occupied by Ga and N atoms and two sites were empty.

The potential for GaN was determined self-consistently according to the local-density
approximation (LDA) [23]. The single-scattering solutions RL and SL were used up to lmax = 3
and density and potential were expanded into multipoles up to 2lmax = 6. The 2s states for
N and the 3d states for Ga were included in the valence states and the deeper states were
treated as atomic core states. The density for the valence states was evaluated by contour
integration [24, 25] with 74 complex energy points adapted to a finite temperature T = 800 K.
For the Brillouin-zone integration 8555 uniformly distributed k points were used in 1/24th
of the zone. The screened structure constants Gr,νν′

L L ′ (k, E) were determined with clusters in
real space, consisting of 169 repulsive muffin-tin potentials of height 8 Ryd in the appropriate
body-centred-cubic arrangement. If not stated otherwise, all calculations presented below
were also done with lmax = 3 and with 169 repulsive potentials to determine the screened
structure constants. The potential constructed in this way leads to a bandgap of 1.99 eV, which
is smaller than the experimental value (3.2 eV [22]). The difference between the calculated
and the experimental bandgap, which is caused by the LDA and the discontinuity of the
exchange–correlation potential, represents no problem for the present study, since here the
LDA calculation is only used to provide an illustrative example. It should be noted that the
particular choice of the potential is not important for the present investigation. Any reasonable
potential would give qualitatively similar results and would not change the conclusions.

4. Angular-momentum convergence

The potential constructed as described above was applied to calculate the number of
states as a function of the chemical potential µ according to (1) using the Green-function
representation (2) and according to (6) using Lloyd’s formula (8). In figure 1 the results obtained
by the T = 0 limit of (6), which is given by Ne(µ, 0) = Im N(µ), and by extrapolating (1)
to T = 0 are shown for lmax = 2, 3, 4 and 6. Here lmax was taken to be the same for
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Figure 1. Number of states for GaN as a function of the chemical potential, (a) calculated by
the Green-function representation (2) and (b) calculated by Lloyd’s formula (8). The results for
lmax = 2, 3, 4, and 6 are given by the solid, dotted, dashed, and dot–dashed curves. 8555 k points
were used in 1/24th of the Brillouin zone and 65 repulsive potentials were used to determine the
screened structure constants.

the single-scattering solution RL and SL , for the �tL L ′ and �αL L ′ matrices, for the Green-
function matrix elements Gnn′

L L ′ and for the sums in (2). Figure 1 clearly shows that the results
calculated by Lloyd’s formula converge much better with lmax than the results calculated by
the Green-function representation (2). The results obtained by (2) also considerably deviate
from the exact result 18, which is obtained by counting the 13 valence states of Ga and the five
valence states of N. For instance, near the middle of the gap (at µ = 0.825 Ryd), the truncation
of (2) leads to errors of −0.044, 0.052, 0.058 and 0.016 for lmax = 2, 3, 4 and 6, whereas the
error of Lloyd’s formula is always less than 0.000 05 independent of lmax. Thus, if the Fermi
level is calculated from the Green function by L summation, the results in figure 1(a) show
that the Fermi level falls into the conduction band for lmax = 2 and into the valence band for
lmax = 3, 4 and 6.

The good convergence of Lloyd’s formula (8) is a consequence of the fact that for higher
angular momenta the single-scattering solutions RL and SL usually rapidly converge to the
corresponding free-space solutions. If changes for l > lmax are neglected, the t and α matrices
can be written in block form as

t =
[

t̃ 0
0 0

]
and α =

[
α̃ 0
0 1

]
(11)

with det α = det α̃. Here the matrices t̃ and α̃ have finite dimension (lmax + 1)2. The
approximation (11) enables us to evaluate Lloyd’s formula from matrices of finite dimension
without any further angular-momentum truncation. In particular, the result depends only on
Green-function matrix elements Gr,nn′

L L ′ or Gr,νν′
L L ′ with l, l ′ � lmax, whereas the Green-function

representation (2) depends on all elements Gnn′
L L ′ even if the approximation (11) is used. Thus (2)

requires an additional truncation of the angular-momentum sums, which is the reason for the
much slower convergence seen in figure 1(a). The approximation (11) can be understood as
a replacement of the potential by a projection potential, which acts only on the lower angular
momenta l � lmax. This replacement slightly modifies the position and size of the gap and
also slightly affects the calculated number of states in the energy region of the valence and
conduction bands, but does not change the exact integer number of states in the gap region.
This means that, independent of lmax, Lloyd’s formula (8) always gives the exact result for the
number of states in the gap, whereas an exact result cannot be obtained from (2), since the
truncation of the sums always causes a systematic error because the correct number of states
in the gap is only obtained in the limit lmax → ∞.
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Figure 2. (a) Error of the number of states in the gap and (b) number of states at the bottom
of the conduction band. The results on the left were calculated with 8555 k points in 1/24th of
the Brillouin zone and with screened structure constants obtained from 387, 169 and 65 repulsive
potentials (solid, dotted and dashed curves). The results on the right were calculated with 169
potentials and 8555 and 285 k points (solid and dotted curves). Lloyd’s formula was used for
Ne(µ, 0) = Im N(µ), the zero-temperature limit of (6).

5. Dependence on k integration and screened structure constants

From the good angular-momentum convergence shown in figure 1(b) it can be expected that
the accuracy of Lloyd’s formula depends on the number of k points used for the Brillouin-zone
sampling and on the number of repulsive potentials used for the real-space determination of the
screened structure constants in a similar way for different values of lmax. This expectation was
confirmed by test calculations and only results for lmax = 3 are presented here. It was found
that the number of k points and the number of repulsive potentials have quite different effects
on the results in the gap and in the valence and conduction bands. This is illustrated in figure 2,
where the left part concentrates on the gap and the right part on the bottom of the conduction
band. The behaviour in the valence band, not shown, is very similar to the behaviour in the
conduction band, although the errors are less visible because the number of states changes
more rapidly at the top of the valence band than at the bottom of the conduction band.

In the gap the deviations from the exact result 18 are very small, less than 2 × 10−6 if
169 repulsive potentials are used, and less than 0.5 ×10−6 if 387 repulsive potentials are used,
and the results are well converged with the number of k points. For instance, calculations
with 285 instead of 8555 k points lead to curves, which cannot be distinguished on the scale
of figure 2(a). It should be emphasized here that the good k convergence in the gap, which
one naively expects for semiconductors, critically depends on the choice of the reference
system. For the usual choice of a free-space reference system the integrated density of states
has a metallic E3/2 behaviour. For this choice the Brillouin-zone integration in (8) is always as
complicated as in metallic systems, since (8) contains the difference between a semiconducting
and a metallic system. The repulsive reference system chosen here has no eigenstates below
a positive energy Ebot, which in first-order perturbation theory is approximately given by the
product of the potential height and the volume fraction covered by the muffin-tin spheres.
In the repulsive system Im Nr (E) vanishes for E < Ebot and in the gap the Brillouin-zone
integration is simple and fast converging as in semiconductors.

In the conduction band the results in figure 2(b) show deviations from the expected smooth
behaviour, which are much larger than the errors in the gap. The curve calculated with 285
k points has flat regions and the curve calculated with 8555 k points has small kinks. These
unrealistic features arise from a poor k convergence of the Brillouin-zone sampling due to the
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metallic character of the band structure in the conduction band. Changes arising from different
numbers (65, 169 or 387) of repulsive potentials are small and cannot be distinguished on the
scale of figure 2(b). The main reason for the poor k convergence is the phase problem discussed
in section 1.

For the results in figure 2 the phase of the logarithm of the KKR determinant ln det |1 −
G(k, E)�t (E)| was determined by an extrapolation method, which is routinely applied in
calculations for impurities [5]. This method uses a complex energy contour, which begins on
the real energy axis above the core states and below the valence states and ends at the Fermi
level. If the mesh points on the contour are close enough, for each value of k the phase can
be estimated at a mesh point by extrapolation from the phases already known at two previous
mesh points. This estimate can be used to add the proper multiple of 2π to the imaginary
part of the logarithm of the KKR determinant and to find the correct phase of the logarithm.
At the beginning of the contour the phase is known from Levinson’s theorem by counting the
number of core states. The extrapolation works quite well in the bandgap, but is not so good
for the conduction and valence bands. Here, with the 74 mesh points used on the contour,
the extrapolation seems to fail for some k points and only an average over many k points
leads to reasonable results. The results could be improved by using more mesh points on the
contour, but then the calculations are very expensive. Therefore the question of whether finite
electronic temperatures can help to reduce the numerical effort is an important issue. This will
be investigated in the next section.

6. Finite temperatures

Finite electronic temperatures connected with fractional occupation numbers are often used in
density-functional calculations in order to reduce the number of k points in the Brillouin zone
and are of particular importance for Green-function multiple-scattering calculations [25–27].
It is therefore interesting to investigate how finite temperatures can help in applications of
Lloyd’s formula. The correct temperature dependence of Ne(µ, T ) arising from the Fermi–
Dirac statistics can be obtained if the integral in (6) is evaluated carefully. Note that as usual
in Green-function methods the integral is defined for complex energies and understood in
the limit Im E → +0. Instead of integrating (6) for real energies, where the Green function
has poles and branchcuts arising from core and band states, it is numerically easier to use
contour integrals in the complex plane to take advantage of the smoother behaviour of the
Green function away from the real axis. At complex energies the only singularities in (6) come
from the second order poles of the derivative of the Fermi–Dirac function at the Matsubara
frequencies En = µ + (2n + 1)iπkT for n ∈ Z. The contour integration was tested for two
contours C1 and C2, which are both parallel to the real axis with distances Im E = πkT/2
and Im E = 2πkT . These contours were chosen because the simple form of the Fermi–
Dirac function on C1 and C2 allows for an easy construction of numerical integration rules as
explained in the appendix. Contour C1 has the advantage that it avoids the singularities of the
Fermi–Dirac function, but it is rather near to the real axis. Contour C2 has a four times larger
distance from the real axis, but the contribution of a Matsubara pole must be evaluated from
the derivative Im N ′(µ+ iπkT ), which was obtained by numerical differentiation as explained
in the appendix. For the contour integrals Gaussian integration rules

− Im
∫

C
dE N(E)

d

dE
f (E, µ, T ) ≈

J∑
j=1

Im(w j N(E j )), (12)

for low order J were found to be sufficient. By change of variable the mesh points can
be expressed as E j = µ + kT x j and the weight function − d

dE f (E, µ, T ) as w1(x) =
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Figure 3. For T = 800 K: (a) in the gap deviation of the number of states from the exact midgap
value 18 and (b) number of states at the bottom of the conduction band. The results on the left,
which are again well converged with the number of k points, were calculated with 8555 k points.
The dash–dotted and dashed curves are for contour C1 with J = 2 and 4 and the dotted and solid
curves are for contour C2 with J = 2 and 4. The solid curve is also obtained for contour C1 with
J = 6. The results on the right were calculated with 8555 and 285 k points (solid and dotted
curves) for contour C1 with J = 2.

Table 1. Mesh points and weights for Gaussian integration over infinite intervals on contour C1
and C2 with the weight functions w1(x) and w1(x) given in the text. The first two lines are for
order J = 2 and the last four lines for order J = 4. Only the positive mesh points are listed; the
negative ones are given by −x j with complex conjugate weights w j .

For Im N on C1 For Re N on C1 For Im N on C2

x1 0.288 675 1346π 0.866 025 4038π 0.577 350 2692π

w1 0.500 000 0000 −0.288 675 1346i 0.500 000 0000

x1 0.934 540 6979π 2.232 950 5094π 1.869 081 3959π

x2 0.234 957 6823π 0.716 890 5234π 0.469 915 3646π

w1 0.017 189 9014 −0.005 909 9389i 0.017 189 9014
w2 0.482 810 0986 −0.330 320 1691i 0.482 810 0986

1
4 cos h−2(x/2 + iπ/4) for contour C1 and as w2(x) = 1

4 cos h−2(x/2) for contour C2. For
contour C2 the weight function is real and positive and only the imaginary part of N(E)

contributes. For contour C1 the weight function is complex with a positive real part and an
imaginary part, which changes sign at x = 0, and both the real and imaginary part of N(E)

contribute. For the low order integration rules used here, it was found that the non-positivity
did not prevent us obtaining accurate results. Values for x j and for the weights w j , which were
obtained as described in the appendix, are given in table 1.

It turned out that J = 2 already leads to very satisfactory results as can be seen in figure 3.
On the other hand, J = 1 with mesh point x1 = 0 and weights w1 = 1 for Im N(E) and
w1 = 0 for Re N(E) is not adequate, since J = 1 just gives a Lorentzian broadening with
unacceptable long tails, which immediately spoil the bandgap. In the gap, for both contours,
the results show good convergence with the order of the integration rule, with errors smaller
than 3 × 10−5 for J = 2. Fully converged results were obtained with J = 4 for contour
C2 and with J = 6 for contour C1. The larger difference of the J = 2 curve for C2 can be
explained by the larger difference of the mesh points on the C2 and the better convergence on
C2 can be explained by its larger distance from the real energy axis with the connected smaller
variations of N(E) in (6). The results in figure 3(a) are also insensitive to the formula used for
the numerical differentiation to obtain the Matsubara pole contribution. The results obtained
by the two-point formula (A.9) or by the four-point formula (A.10) differed less than 10−6.
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In the conduction band the comparison of the results for T = 800 K in figure 3(b) with the
results for T = 0 K in figure 2(b) shows that the use of finite temperatures leads to considerably
better results. The curve calculated with 8555 k points has the expected smooth behaviour and
also the slightly wavy curve calculated with 285 k points is much better than the unrealistic
one in figure 2(b). For T = 2000 K the difference between calculations with 285 or 8555 k
points is even more reduced. This indicates that finite temperatures can help to simplify the
phase determination in the extrapolation method. Nevertheless, it was found that for J = 4
the relatively large distances between the mesh points on the contours sometimes produced
failures of the extrapolation and prevented us obtaining consistently smooth curves in valence
and conduction bands. Only J = 2 produced smooth curves, which agreed very well for both
contours. Presumably, with additional extrapolation points on the contours the failures could
be avoided. This was not investigated, since the method presented in the next section turned out
to be much more advantageous, if Lloyd’s formula is used together with finite temperatures.

7. Solution for the phase problem

The smooth dependence of Lloyd’s formula as a function of complex energy, which was the
reason for the stability of the results in the previous section with respect to numerical integration
and differentiation, can be exploited to replace the cumbersome extrapolation method for the
determination of the phase of the complex logarithm by an alternative. The alternative is based
on the observation that the numerical derivative of Lloyd’s formula can accurately be calculated
already by the simple formula (A.9). The alternative consists in partially integrating (6) as

Ne(µ, T ) = Im
∫ ∞

−∞
dE f (E, µ, T )

d

dE
N(E) (13)

and in evaluating the derivative in (13) numerically. For the derivative d
dE N(E) it is important

to note that any analytical function f (z) = u(z)+iv(z) of the complex variable z = x +iy with
real u(z) and v(z) satisfies the Riemann–Cauchy conditions, which are given by du

dx = dv
dy and

du
dy = − dv

dx . This means that the derivative in (13) can be evaluated from the real part Re N(E)

alone by calculating its derivative in the directions parallel and perpendicular to the real axis
with the result

dN(E)

dE
= dRe N(E)

dRe E
− i

dRe N(E)

dIm E
. (14)

Since the real part of N(E) only depends on the single-valued real part of the complex
logarithm, the difficulty with the multivalued imaginary part of the logarithm is completely
avoided in the derivative (14). Since the integral (13) is in one-to-one correspondence to the
integral

n(r, T ) = − 1

π
Im

∫ ∞

−∞
dE f (E, µ, T )G(r, r, E) (15)

for the charge density, the same contours and mesh points can be used to calculate the number of
states and the charge density simultaneously. As already expected from the results in section 6
the numerical differentiation of (14) was found to be insensitive to the choice of formula (A.9)
or (A.10) with differences smaller than 10−6 and to be stable with respect to the step size h.
For 8555 k points the results calculated by use of (14) completely agreed with the solid curves
in figure 3 and for fewer k points the expected smooth behaviour for the number of states was
always found. It is important to note that the differentiation method presented here can also
considerably reduce the effort in the Brillouin-zone sampling. Whereas the extrapolation must
be done separately for each k point and thus requires the same high number of k points at all
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Table 2. Fit parameters av(T ) and ac(T ) and Fermi level µ0 = EF(T ).

T (K) 400 800 1200 1600 2000

av 0.003 754 0.011 12 0.020 82 0.032 72 0.046 81
ac 0.000 062 90 0.000 1844 0.000 3664 0.000 6106 0.000 9250
µ0 (Ryd) 0.829 130 0.834 336 0.839 303 0.844 123 0.848 804

energy mesh points, the differentiation method requires a high number of k points only at the
Matsubara frequencies En = µ + (2n + 1)iπkT nearest to µ. This was checked and it turned
out that 91 k points were enough to give results with an accuracy of about 10−6 provided that
the number of k points was increased at E0 and E1 to 8555 and 506 and at E2 and E3 to 285.
Thus (14) together with (13) opens the way to an efficient and accurate calculation of total
number of states by avoiding the problem of the multivalued imaginary part of N(E).

8. Temperature dependence of the Fermi level

The high accuracy and the reliability of the method presented in the previous section is
illustrated here by applying Lloyd’s formula to a numerically difficult problem, which is the
determination of the influence of the Fermi–Dirac statistics on the temperature dependence of
the intrinsic Fermi level in GaN. The textbook result for the Fermi level

EF(T ) = 1

2
(Ev + Ec) +

3

4
kT ln

(
mv

mc

)
(16)

is derived under the conditions that the temperature is small compared to the gap (kT �
Ec − Ev) and that the relevant bands are parabolically shaped. The effective masses mv and mc

at the valence band maximum Ev and conduction band minimum Ec are difficult to calculate.
They are usually determined by fitting the bands obtained by density-functional calculations
to model Hamiltonians of Kohn–Luttinger or k · p type. This works for GaN with its bandgap
at the � point, but becomes extremely complicated for semiconductors consisting of more
elements or occurring in less symmetric structures. An expensive method, which avoids the
detailed knowledge of the band structure, is the accurate calculation of the densities of states
near Ev and Ec by straightforward Brillouin-zone integrations with unbiased k point meshes
and the use of these densities of states in integrals as (1) or (13).

The disadvantage of the use of effective masses or accurate densities of states near Ev

and Ec is that their calculation is not simplified by the temperature broadening, which is
only afterwards applied in the integrals (1) or (13). On the other hand, the temperature is
directly included, if the integrals are evaluated along complex energy contours as described
in sections 6 and 7. The calculated results for the temperature dependence of the number
of states were accurate enough to determine the Fermi level µ0 = EF(T ) from the solution
of Ne(µ0, T ) = 18. For large temperatures (T � 2000 K) this solution could be obtained
directly, whereas for smaller temperatures the differences between Ne(µ, T ) and 18 were too
small in the vicinity of µ0 because of the exponential temperature dependence. Then µ0 could
be obtained from the global behaviour of Ne(µ, T ) − 18 as a function of µ. It was found
that this function could well be fitted for µ values between the calculated band edges Ev =
0.751 17 Ryd and Ec = 0.896 73 Ryd by two exponentials Nc(T ) = ac exp(−β(Ec −µ)) and
Nv(T ) = av exp(−β(µ−Ev)) for the numbers of occupied conduction and unoccupied valence
states. The condition Nc(T ) = Nv(T ) with the solution µ0 = 1

2 (Ev + Ec) + 1
2 b−1 ln(av/ac)

then determines the Fermi level, which is given in table 2 together with the calculated fit
parameters ac and av for several temperatures. As a function of temperature the calculated
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Fermi level is well described by EF(T ) = 0.8244 Ryd + 1.939kT or even better by EF(T ) =
0.8238 Ryd + 2.142kT − 13.3k2T 2. The close agreement between the extrapolated zero-
temperature values 0.8244 and 0.8238 Ryd and the result 1

2 (Ev + Ec) = 0.823 95 Ryd, which
was obtained directly from band-structure calculation for real energies, is a consequence of
the accuracy of the calculated Fermi levels in table 2. This shows that even with a moderate
number of k points Lloyd’s formula used with finite-temperature contour integrals allows for
very accurate calculations of the number of states.

9. Summary

The angular-momentum convergence of Lloyd’s formula was found to be much faster
than the convergence of the multiple-scattering Green function, particularly in the gap of
semiconductors or insulators, where Lloyd’s formula always gives the exact result independent
of the angular-momentum cut-off. This was explained by the fact that the calculation of the
Green function requires a truncation of slowly converging angular-momentum sums, whereas
the calculation of Lloyd’s formula only requires us to omit angular-momentum channels
with rapidly decreasing contributions. The omission changes the potential into a projection
potential, which slightly changes the band edges, but not the exact integer number of states in
the gap. It was pointed out that in the gap the choice of a repulsive reference system as used
in the tight-binding KKR method leads to fast converging Brillouin-zone samplings, which
cannot be achieved by the usual free-space reference system because of its metallic character.

It was shown that Lloyd’s formula can be used at finite temperatures with the physically
correct Fermi–Dirac behaviour by exploiting contour integrals in the complex energy plane
and that Lloyd’s formula could be accurately numerically differentiated for complex energies.
This fact together with the Riemann–Cauchy conditions for analytical functions enabled us to
develop a method which avoids the difficult determination of correct phases of multivalued
imaginary parts of complex logarithms, since it works with single-valued real parts alone.
It was shown that this method, which uses complex energy integration contours in one-to-
one correspondence to the ones used for charge-density calculations, is reliable and accurate
enough to determine the influence of the Fermi–Dirac statistics on the temperature dependence
of the intrinsic Fermi level in semiconductors. From the experience with impurity calculations
it is also expected that this reliable and accurate method for Lloyd’s formula leads to improved
total energies in the KKR Green-function method for bulk and surface systems.

In principle, the one-to-one correspondence, which is valid for each energy (and at each
k point), could be used to normalize the charge density calculated with an lmax cut-off by the
number of states calculated with Lloyd’s formula. This would enable a consistent determination
of charge density and Fermi level, but since the real part of (2) summed over all L diverges for
r′ = r further investigations are necessary, which are planned for the future.
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Appendix. Integration and differentiation rules

The mesh points E j and the weights w j for the integration rule (12) were determined by the
condition that the exact result is obtained if N(E) is a polynomial in E of order 2J − 1 or less.
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Table A.1. Moments M2 to M7 defined by (A.2).

a M2 M3 M4 M5 M6 M7

1 π2/3 0 7π4/15 0 31π6/21 0
i π2/12 −3iπ3/8 7π4/240 −25iπ5/32 31π6/1344 −427π7/128

This condition, which leads to a set of non-linear equations for E j and w j , can be written as

Mn =
J∑

j=1

w j En
j with n = 0, 1, 2, . . . 2J − 1, (A.1)

where Mn denote the moments of the weight function − d
dE f (E, µ, T ), which are defined as

Mn(a) = −
∫ ∞

−∞
dx xn d

dx

1

1 + a exp(x)
. (A.2)

Here the parameter a is equal to i for contour C1 and equal to unity for contour C2. The integral
in (A.2) can be evaluated analytically. By the use of two intervals from −∞ to 0 and from 0
to ∞ and with the substitution −x for x in the first interval, the moments are given by

Mn(a) = (−1)n
∫ ∞

0
dx xn d

dx

1

1 + a exp(−x)
−

∫ ∞

0
dx xn d

dx

1

1 + a exp(x)
. (A.3)

This can be expressed in the form Mn(a) = (−1)n In(a) + In(a−1) by use of

1

1 + a exp(−x)
= 1 − a exp(−x)

1 + a exp(−x)
, (A.4)

1

1 + a exp(x)
= a−1 exp(−x)

1 + a−1 exp(−x)
(A.5)

and

In(a) = −
∫ ∞

0
dx xn d

dx

a exp(−x)

1 + a exp(−x)
. (A.6)

For n = 0 the integration in (A.6) is trivial and gives I0(a) = a(1 + a)−1 and M0(a) = 1. For
n �= 0 partial integration yields

In(a) = n
∫ ∞

0
dx xn−1 a exp(−x)

1 + a exp(−x)
. (A.7)

Here for n = 1 the substitution y = exp(−x) leads to an elementary integral with the result
I1(a) = ln(1 + a), which leads to M1(1) = 0 and M1(i) = −iπ/2. For n > 1 the denominator
in (A.7) can be expanded into a geometric series as proposed by Sommerfeld [28]. The result

In(a) = −n
∫ ∞

0
dx xn−1

∞∑
k=1

(−a)k exp(−kx) = −�(n + 1)

∞∑
k=1

(−a)kk−n (A.8)

can be written in terms of Riemann’s zeta function if a = 1, and in terms of polylogarithms
if a = i. Explicit results for the moments M2 to M7, which together with M0 and M1 given
above are necessary to derive rules up to order J = 4, are listed in table A.1.

The derivative Im N ′(µ + iπkT ) was obtained by numerical differentiation either from
the symmetric two-point formula

N ′(E) = 1

2h
[N(E + h) − N(E − h)] (A.9)
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or from the symmetric four-point formula

N ′(E) = 1

12h
[8N(E + h) − 8N(E − h) − N(E + 2h) + N(E − 2h)] (A.10)

with the step size chosen as h = πkT/100. It was found that the results for N ′(E) practically
do not depend on h, even if it is increased or decreased by a factor of ten.
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